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This Lecture

• my personal interpretation (experience: 1978-2023):

– unifying framework: probabilistic models and Bayes decison theory

– deep learning is just one out of many machine learning approaches

– experience: ’more data help’

• messages:

– success of data-driven approaches

– NLP and AI: moving from rule-based to data-driven approaches

– things started 40 years ago, not in 2013!

– evolution from small to large language (and acoustic!) models

– sort out the fundamental principles beyond experimental noise

– framework: (applied) mathematical and statistics

• key messages:

– there has been, is and will be life outside deep learning

– there is NO life outside probabilistic modelling (Bayes framework)
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1 HLT and ANNs
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Speech & Language Technology: Sequence-to-Sequence Processing

Automatic Speech Recognition (ASR)

(speech signal processing)

we  want to preserve this great  idea

Handwriting Recognition (HWR)

(text image processing)

we  want to preserve this  great  idea

Machine Translation (MT)

(symbol or text processing)

wir   wollen diese  große  Idee  bewahren

  we  want to preserve  this  great  idea

common characteristics:

– use of a ’small’ language model (LM)

to generate smooth fluent text

(syntax, semantics, context)

– generative aspect of LM: unlike formal

NLP tasks (POS/synt./semant. labels, ...)

– LM is learned from text only (without

annotation, unsup. mode, pre-training)

note: this is how (small) language models started (1980 - 2000)

[Jelinek & Mercer+ 77]
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ASR: first research 1975-1980

ASR is sequence-to-sequence

processing at several levels:

10-ms vectors, phonemes, words

problems:

– ambiguities at/between all levels

– interdependencies of decisions

approach 1975-1980

(Baker/CMU and Jelinek/IBM):

– probabilitistic modelling

– holistic approach (’end-to-end’):

single criterion for system design

(Bayes decision rule)

– complex mathematical modelling
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1980-1995 Baseline Statistical Approach to ASR

• modelling: probability distributions/data-driven approaches with

10-msec vectors: xT
1 = x1...xt...xT xt ∈ IRD

word string: wN
1 = w1...wn...wN

• consider joint generative model: p(wN
1 , xT

1 ) = p(wN
1 ) · p(xT

1 |w
N
1 )

• language model p(wN
1 ): based on word trigram counts, learned from text only [wN

1 ]

• acoustic (-phonetic) model p(xT
1 |w

N
1 ): learned from annotated audio data [xT

1 , w
N
1 ]

– generative hidden Markov model:

discrete models/VQ, Gaussians, Gaussian mixtures, ...

– structure: first-order dependence and mathematically nice

– training: (’efficient’) EM algorithm with sort of closed-form solutions

• dichotomy:

– general machine learning (like CV): single (isolated) events (x, c):

emphasis on ’discriminative’ class posterior p(c|x) (rather than p(x, c) = p(c) · p(x|c) )

– sequence-to-sequence task (like ASR: time alignment and LM context):

emphasis on ’generative’ joint model p(xT
1 , w

N
1 )

• decoding/generation: Bayes decision rule (simplified form)

= use single criterion and avoid local decisions
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Speech Input

Acoustic
Analysis

Phoneme Inventory

Pronunciation Lexicon

Language Model

Global Search:

maximize

  x
1 
...
 
x

T

Pr(w
1
 ... w

N
)  Pr(x

1
 ... x

T
 |  w1...wN

)

  w
1
 ... wN

Recognized
Word Sequence

 

over

  Pr(x
1
 ... x

T
 |  w1...wN )

Pr(w
1
 ... w

N
)

Statistical Approach to ASR

– paper by IBM [Bahl & Jelinek+ 83]

– 1985 operational research system: Tangora

(5k-word voc., isolated words, speaker dep.)

– note: a separate LM
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Operational ASR Systems

ASR at Philips: Research Hamburg/Aachen and BU Dictation Systems Vienna:

• 1k-word continuous speech recognition: research prototype

SPICOS 1984-1989 (German BMBF): Siemens, Philips, German universities

• 10k-word continuous speech recognition: commercial Philips product

– speaker dep., DP beam search and dynamic search space, real-time on Motorola 68020

– presentation at Eurospeech 1993: medical text dictation

speech translation ( = ASR + MT) at RWTH Aachen: research prototypes

• Verbmobil 1993-2000 (German BMBF):

appointment scheduling/limited domain, German-English, 8k words

• TC-STAR 2004-2007: domain: speeches given in EU parliament

– challenge: MT robust wrt ASR errors → data-driven methods

– approach to MT: phrase-based approach

– first research prototype for unlimited domain and real-life data

◦ fully automatic, not real time

◦ without deep learning!

– partners: KIT Karlsruhe, RWTH, CNRS Paris, UPC Barcelona, IBM-US Research, ...

more research prototypes: GALE, BOLT, BABEL, QUAERO, EU-Bridge, Translectures, ERC

along with DARPA/NIST/project evaluations
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ASR History: Operational Research Systems

• steady improvement of data-driven methods:

HMMs with Gaussians and mixtures, phonetic CART, statistical trigram language model,

speaker adaptation, sequence discriminative training, ANNs

• methodology in ASR since 1990: standard public data:

TIMIT, RM/1k, WSJ/5k, WSJ/20k, NAB/64k, Switchboard/tel., Librispeech, TED-Lium

• 1993-2000 NIST/DARPA: comparative evaluation of operational systems:

– virtually all systems: generative HMMs and refinements

– 1994 Robinson: hybrid HMM with RNN (singularity!)

alternative concepts (with less success):

• 1985-93: criticism about data-driven approach/machine learning

– acoustic model: too many parameters and saturation effect

– concept of rule-based AI: acoustic-phonetic expert systems

– language model: similar criticism (linguistic structures/grammars)

• SVM (support vector machines): never competitive in ASR

(ASR requires decisions in context!)
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ASR: ANN in Acoustic Modelling

• 1987 [Bourlard & Wellekens 87]: MLP and ASR

• 1988 [Waibel & Hanazawa+ 88]: phoneme recognition by TDNN (convol.NNs!)

• 1989 [Bourlard & Wellekens 89, Morgan & Bourlard 90]:

– ANN outputs: can be interpreted as class posteriors

– hybrid HMM: use ANN for frame label posteriors

• 1989 [Bridle 89]: softmax (’Gaussian posterior’) for normalized ANN outputs

• 1991 [Bridle & Dodd 91] backpropagation for HMM discriminative training at word level

• 1993 [Haffner 93]: sum over label-sequence posterior probabilities in hybrid HMMs

(sequence discriminative training )

• 1994 [Robinson 94]: RNN in hybrid HMM

(operational system, DARPA evaluations)

• 1997 [Fontaine & Ris+ 97, Hermansky & Ellis+ 00]:

tandem HMM: use ANN for feature extraction in a Gaussian HMM

• 2009 Graves: CTC for handwriting recognition

(operational system, ICDAR competition 2009)
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Neural ASR: Tandem vs. Hybrid HMM

hybrid HMM: ANN-based feature extraction + Gaussian posterior + HMM

• 2009 [Graves 09]: CTC - good results on LSTM RNN for handwriting task

• 2010 [Dahl & Ranzato+ 10]: improvement in phone recognition on TIMIT

• 2011 [Seide & Li+ 11, Dahl & Yu+ 12]: Microsoft Research

– fully-fledged hybrid HMM

– 30% rel. WER reduction on Switchboard 300h

• since 2012: other teams confirmed reductions of WER by 20% to 30%

tandem HMM: ANN-based feature extraction + generative Gaussian + HMM

• 2006 [Stolcke & Grezl+ 06]: cross-domain and cross-language portability

• 2007 [Valente & Vepa+ 07]: 8% rel. WER reduction on LVCSR

• 2011 [Tüske & Plahl+ 11]: 22% rel. WER reduction on LVCSR/QUAERO

(Interspeech 2011, like [Seide & Li+ 11])

experimental observation for hybrid and tandem HMM:

progress by using deep MLPs
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Hidden Markov Model (HMM):

Classical vs. Hybrid HMM

– sequence of acoustic vectors:

X = xT
1 = x1...xt...xT over time t = 1, ..., T

– sequence of states/segments s = 1, ..., S

sT1 = s1...st...sT over time t

with phonetic/graphemic labels:

aS
1 = a1...as...aS

= W : word sequence

time

A

L

E

X

• classical HMM: generative model for input sequence xT
1 :

p(xT
1 |W = aS

1 ) =
∑

sT
1

∏

t
p(st+1|st, ast) · p(xt|as=st)

• hybrid HMM: discriminative model for output sequence aS
1 :

[Bourlard & Wellekens 89] machine learning point-of-view:

it is much(!) better to model p(as|xt) than p(xt|as) :

p(xt|as) = q(as|xt) · p(xt)
/

q(as) (note: approximative relation!)

p(W = aS
1 |x

T
1 ) =

∑

sT
1

∏

t
p(st+1|st, ast) · p(as=st|xt)
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Direct or Posterior HMM (Variants: CTC, Transducer, ...)

( (view: how to reach [t, s = st] ?)

three sequences over time:

xT
1 = x1, ..., xt, ..., xT

sT1 = s1, ..., st, ..., sT

yT
1 = y1, ..., yt, ..., yT

A

L

E

X

$

$

TIME

A

L

E

X

$

$

TIME

path consists of transitions reaching [t, s = st]:

first transition δt and then label yt:

[t−1, st−1] → [t, s = st = st−1+δt] δt ∈ {0, 1}

JOINT event of δt and frame label yt:

[δt, yt] : p
(

[δt, yt]
∣

∣..., xT
1

)

link to state s with label as ∈ aS
1 :

[δt, yt] : p
(

[δt, yt = as]
∣

∣..., xT
1

)

first-order dependence in aS
1 :

[δt, yt] : p
(

[δt, yt = as]
∣

∣as−1, ..., x
T
1

)

remarks:

– for full context, replace as−1 by as−1
0

– alternative view: how to leave [t, s = st] ?

first label yt and then transition δt:

p
(

[yt = as, δt]
∣

∣as−1, x
T
1

)
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Mathematical Formalism:

Direct or Posterior HMM for p(aS
1 |x

T
1 ) (view: how to reach [t, s = st] ?)

formal derivation of full model:

p(aS
1 |x

T
1 ) =

∑

sT
1

p(aS
1 , s

T
1 |x

T
1 )

finite-state model: factorization over t:

first-order model in sT1 and aS
1

=
∑

sT
1

∏

t

p
(

[st, yt = ast

∣

∣st−1, ast−1, x
T
1

)

difference in state/segment indices: δt := st − st−1

=
∑

sT
1

∏

t

p
(

[δt, yt = ast]
∣

∣ast−1, x
T
1

)

explicit segmental interpretation:

=
∑

sT
1

∏

s

∏

t: st=s

p
(

[δt, yt = as]
∣

∣as−1, x
T
1

)

acoustic encoder : ht = ht(x
T
1 )

=
∑

sT
1

∏

s

∏

t: st=s

p
(

[δt, yt = as]
∣

∣as−1, ht(x
T
1 )

)

A

L

E

X

$

$

TIME

frames t within segment s:

– first frame: δt = 1

– other frames: δt = 0
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Direct HMM and Variants:

CTC, [RNN-] Transducer, Blank/ǫ Models

A

L

E

X

$

$

TIME

A

L

E

X

Time

X

X

E

E

L

L

A

ε

ε

ε

ε

ε
ε

ε
ε

ε

direct HMM: without and without blanks/ǫ

question: how to model the joint event [δt, yt = as]] in p
(

[δt, yt = as]
∣

∣as−1, x
T
1

)

?

here: no separation of transition and label probabilities !

• direct HMM ( no blanks/ǫ ):

keep the original joint alphabet for the ANN output nodes:
{

[δt ∈ {0, 1}, yt = as]
}

= 2 x (segment label alphabet) + silence label

• transducer: with blanks/ǫ:

simplify the alphabet of joint events [δt, yt = as]:

[δt = 1, yt = as] := as [δt = 0, yt = as] := ǫ

resulting alphabet: 1x (segment label alphabet) + ǫ (also for silence)
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Artificial Neural Networks (ANN) and Deep Learning:

question: what is different now after 30 years?

answer: we have learned how to (better) handle

a complex numerical optimization problem:

• more powerful hardware

(e. g. GPUs)

• empirical recipies for optimization:

practical experience and heuristics,

e.g. layer-by-layer pretraining

• result: we are able to handle more

complex architectures

(deep MLP, RNN, attention, transformer, etc.)

my interpretation: 2022’s most advanced ASR systems:

= sophisticated feature extraction/representation

+ softmax ( = Gaussian posterior)
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Input-Output Alignment: Attention and Transducer

common properties:

– input: acoustic encoder: representation/state vectors ht = ht(x
T
1 ), t = 1, ..., T

– output: (phoneme) labels as, s = 1, ..., S with/without integrated language model

· · · · · ·

·
·
·

·
·
·

·
·
·

·
·
·

representation/state vectors ht:

– deep MLP: finite window

– RNN and LSTM-RNN

– self-attention (transformer)

similar: output string

• (cross-) attention: direct factorization:

p(aS
1 |x

T
1 ) =

∏

s

p(as|a
s−1
0 , xT

1 ) =
∏

s

p(as|as−1, rs−1, cs)

cs :=
∑

t
p(t|as−1

0 , xT
1 ) · ht

with context vector cs and output state vector rs

criticism for ASR: lack of strict monotonicity

and localization

• finite-state transducer (direct HMM, CTC, RNN-T, ...):

introduce hidden paths and then factorize:

p(aS
1 |x

T
1 ) =

∑

sT
1

p
(

sT1 , a
S
1 |h

T
1 (x

T
1 )

)

=
∑

sT
1

∏

t

p
(

st+1, yt = ast

∣

∣

∣
st, a

st−1
0 , hT

1 (x
T
1 )

)

details: RWTH papers at ICASSP and Interspeech
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Sequence-to-Sequence Processing:

Transformer Approach (Google [Vaswani & Shazeer+ 17])

designed for a ’two-dim.’ problem

with input and output sequences:

• keep the cross-attention between

output and input as in RNN

attention [Bahdanau & Cho+ 15]

• for input and output sequence:

replace RNN structure

by self-attention,

i. e. pair-wise associations

2020 OpenAI: transformer GPT-3:

– 96 layers, each with 12.288 nodes

– 96 attention heads

in total: 175 Bio parameters

consider MT to be a 1-dim. LM problem:

[input, output] sequences → single stream

2013 [Kaltenbrenner & Blunsom 13]

2014 [Sutskever & Vinyals+ 14]

today: GPT successful for many NLP tasks

(generative tasks, beyond MT)

·
·
·

·
·
·

· · · · · ·

·
·
·

·
·
·

hJ

1

(L)

hJ

1

(l)

fJ

1

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

· · ·

· · ·

sI

1

(L)
cI

1

(L)
cI

1

(l+1)
sI

1

(l+1)
cI

1

(l)

Attention

ei
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Machine Translation (MT): History

statistical/data-driven approaches were controversial in MT (and other NLP tasks):

• 1969 Chomsky:

... the notion ’probability of a sentence’ is an entirely useless one,

under any known interpretation of this term.

• result: mainstream research had a strict dichotomy until (around) 2000:

– speech = spoken language: signals, subsymbolic, machine learning

– language = written text: symbols, grammars, rule-based AI

• until 2000: mainstream approach was rule-based

– result: huge human effort required in practice

– problems: coverage and consistency of rules

• 1989-93: IBM Research: statistical approach to MT

1994: key people (R. Mercer, P. Brown) left for a hedge fund

• 1996-2002 RWTH: improvements beyond IBM’s approach:

– HMM alignments, log-linear modelling, phrases as basic units

– superior results in DARPA/NIST evaluations

• around 2004: from singularity to mainstream

– F. Och (and more RWTH PhD students) joined Google

– 2008: service Google Translate

• since 2014: neural MT (unlike count-based MT):

attention mechanism [Bahdanau & Cho+ 15]
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Open Questions

– why do we use Bayes decision rule for ASR ?

– what is the relation of the ANN framework with Bayes decison rule?

– what is the role of softmax output layer in ANNs ?

– what is the relation of training criteria with Bayes decison rule/classification error ?

– what is the relation between training criteria and end-to-end modelling ?

– why should we separate acoustic model and language model ?

– how to use ANNs for acoustic modelling? suitable ANN structures?

– what are synchronization/alignment methods for acoustic modelling ?

– how to use ANNs for language modelling? suitable ANN structures ?
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2 Unifying Framework: Bayes Decision Rule
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Unifying Framework:

Statistical Decision Theory and Bayes Decision Rule

• so far: historical review of ASR (along with MT) and ANNs

covering a variety of ANN models and training criteria

• what about training criteria?

(e. g. cross-entropy, seq.disc. training, state-level min. Bayes risk, expected risk, ...)

ultimate justification should be based on performance

– consequence: re-visit Bayes decision rule und its framework

– example: textbook by Duda & Hart 1973, pp. 11-16

– originally not explicitly meant for ASR or string processing

• what is not well covered in textbooks or papers:

– mathematical relation between training criteria and loss function/performance

– practical implications for training criteria

references, mostly RWTH:

[Ney 03, Schlüter & Scharrenbach+ 05, Xu & Povey+ 10, Schlüter & Nussbaum+ 11],

[Schlüter & Nussbaum+ 12, Schlüter & Nussbaum-Thom+ 13, Schlüter & Beck+ 19]
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Unifying View:

Bayes Decision Theory and Machine Learning

(Why are we doing what we are doing? )

Training
Data

Test
Data

Probabilistic
Models

Performance Measure
(Loss Function)

 Training Criterion

Combinatorial Optimization
(Search)

Output

Parameter
Estimates

Evaluation

Numerical Optimization

Bayes Decision Rule
(Exact Form)
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Principles: Bayes Decision Theory for HLT

• general principles formulated already in 1970s (or before):

textbook: [Duda & Hart 73, pp. 11-16]

not explicitly for string processing

• concept: imagine a "huge huge" database of (input,output) string pairs [x, c]:

[xr, cr], r = 1, ...R

• define empirical distribution: pr(x, c) =
1

R
·

R
∑

r=1
δ(x, xr)δ(c, cr)

remarks:

– fully specified, no free parameters

– derived distributions: pr(c), pr(x), pr(c|x), pr(x|c)

– easy principle (i. e. a "huge" table), but difficult implementation for strings

– simplifying assumption about input x: discrete rather than cont.-valued x ∈ IRD

• guessing game: knowing x guess c:

x → c = ĉ(x)

terminology:

classify the input data (ASR, HTR) or generate the output data (MT)
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• perfect solution is not possible:

– we want to convert a relation [x, c] into a function x → c = ĉ(x)

– for each pair [x, c], we want to compare: c
?
= ĉ(x)

and thus we need an error measure or loss function L[cr, ĉ(xr)], r = 1, ..., R

• popular error measures for strings

(sequence of symbols: words, subword units, graphemes/letters, phonemes):

– in general: 0/1 loss function = string error:

is the string correct as a whole?

– strings in ASR/HTR: WER = word ("symbol") error rate

WER = edit distance = errors: ins + del + sub

– strings in MT: TER = translation error rate

TER = edit distance + swaps of symbol groups

alternative: BLEU (more complex)

• key question: how to generate the output string?

– perfect solution is not possible

– best compromise: for each input x (which might exist in several pairs [x = xr, cr] ),

select an output that minimizes the expected loss/risk:

x → c∗(x) := argmin
c

{

∑

c̃

pr(c̃|x) · L[c̃, c]
}

using the class posterior distribution pr(c|x) of the data
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Decision Rules: Bayes, Pseudo Bayes and Approximations

• Bayes decision rule:

x → c∗(x) := argmin
c

{

∑

c̃

pr(c̃|x) · L[c̃, c]
}

shortcomings in practice:

– difficult/impossible to store pr(c|x)

– generalization (from closed to open world): how to handle unseen inputs x ?

• replace the empirical distribution pr(c|x) by a model pϑ(c|x) ("pseudo Bayes")

with parameters ϑ to be learned from data (e. g. neural net):

x → cϑ(x) := argmin
c

{

∑

c̃

pϑ(c̃|x) · L[c̃, c]
}

• special choice of loss function: 0/1 = string error:

L[c̃, c] = 1 − δ(c̃, c) ∈ {0, 1}

x → cϑ(x) := argmax
c

{

pϑ(c|x)
}

– terminology: MAP rule (MAP = maximum a-posteriori)

– starting point in most systems

– strictly speaking: adequate only for string error
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Bayes Decision Rule and Loss Function

goal: to study the effect of the loss function

three types of outputs and associated loss functions:

• "atomic" output: 0/1 loss

system output has no ’internal structure’,

i. e. single symbols or string as a whole

• strings with synchronization: Hamming distance

loss function: equivalent to symbol error for each position of output string

• strings with no synchronization: general loss (maybe metric)

edit distance (WER) and generalizations (TER)

note minimalistic notation:

– single (class) symbol: c or cn
– several variables of the same type: c, c̃, c′, ...

– string of symbols: c or cN1 = c1...cn...cN
– decision rule generating an output: x → ĉ(x)
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Strings with Synchronization: Symbol Error

correct string: c̃1 c̃2 ... c̃n−1 c̃n c̃n+1 ... c̃N−1 c̃N
| | | | | | | | |

hypothesized string: c1 c2 ... cn−1 cn cn+1 ... cN−1 cN

two types of posterior distributions:

joint: p(cN1 |xN
1 ) marginal: pn(cn|x

N
1 ) :=

∑

c̃N
1
:cn=c̃n

p(c̃N1 |xN
1 )

decision rule for minimum symbol error

using Hamming distance ( = symbol error in each position n ):

L[c̃N1 , cN1 ] :=
∑

n
[1 − δ(c̃n, cn)]

xN
1 → ĉN1 (xN

1 ) = argmincN
1

{

∑

c̃N
1

p(c̃N1 |xN
1 ) L[c̃N1 , cN1 ]

}

= ...

=
[

argmaxcn

{

pn(cn|x
N
1 )

}]N

n=1

compare with minimum string error:

xN
1 → ĉN1 (xN

1 ) = argmaxcN
1
{p(cN1 |xN

1 )}
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Strings: From no Synchronization to Approximate Synchronization

given synchronization:
[

cN1 , xN
1

]

=
[

cn, xn

]N

n=1

input vectors: x1 x2 ... xn−1 xn xn+1 ... xN−1 xN

| | | | | | | | |

output symbols: c1 c2 ... cn−1 cn cn+1 ... cN−1 cN

pn(c|x
N
1 ) =

∑

cN
1
:cn=c

p(cN1 |xN
1 )

missing synchronization (ASR) between xT
1 and xN

1 :

input vectors: x1 x2 ... ... xt−1 xt xt+1 ... ... xT−1 xT

? ? ? ?

output symbols: c1 c2 ... cn−1 cn cn+1 ... cN−1 cN

approximative synchronization using a seed string ĉN1 = ĉN1 (xT
1 ) (e. g transcription):

pn(c|x
T
1 ) = ?? ∼=

∑

cN
1
:cn=c

p(cN1 |ĉN1 , xT
1 )

related to training criteria: Povey’s minimum word error rate,

state-level minimum Bayes risk (sMBR), expected Bayes risk, ...
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Unifying View:

Bayes Decision Theory and Machine Learning

(Why are we doing what we are doing? )

Training
Data

Test
Data

Probabilistic
Models

Performance Measure
(Loss Function)

 Training Criterion

Combinatorial Optimization
(Search)

Output

Parameter
Estimates

Evaluation

Numerical Optimization

Bayes Decision Rule
(Exact Form)
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Bayes Decision Theory and Machine Learning

mathematical analysis (omitting details):

• Bayes decision rule: effect of loss function

– compare 0/1 loss with general loss L[c̃, c]

– identical results for metric loss function L[c̃, c] (e. g. edit distance)

if maxc pϑ(c|x) ≥ 0.5

note: purely mathematical result

[Schlüter & Scharrenbach+ 05, Schlüter & Nussbaum+ 11]

• training critera for model pϑ(c|x)

– should be formulated as a function of model pϑ(c|x)

– should interpret the model as an approximation to the true distribution pr(c|x)

– should be related to performace (expected loss)

– training in practice: HUGE numerical optimization problem

(many shortcuts and approximations beyond cross-entropy training)
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True vs. Pseudo Bayes Decision Rule: Training Criteria

mathematical analysis for string error (0/1 loss) [Ney 03]:

• empirical (= true) distributions pr(c, x) and pr(c|x)

(as defined by training data: cr, xr, r = 1, ..., R ):

E∗ = 1 − A∗ = true Bayes classification error: absolute minimum using

true Bayes rule: x → ĉ∗(x) = argmaxc{pr(c|x)} A∗ =
∑

x pr(x) · pr
(

c = c∗(x)|x
)

• model pϑ(c|x) (e. g. an ANN) with set of parameters ϑ:

Eϑ = 1 − Aϑ = model-based classification error using:

pseudo Bayes rule: x → ĉϑ(x) = argmaxc{pϑ(c|x)} Aϑ =
∑

x pr(x) · pr
(

c = cϑ(x)|x
)

upper bound: Kullback-Leibler divergence (relative entropy):

1/2 ·
[

E∗ − Eϑ

]2
≤

∑

x
pr(x)

∑

c
pr(c|x) log

pr(c|x)

pϑ(c|x)
=

1

R

∑R

r=1
log

pr(cr|xr)

pϑ(cr|xr)

criterion: minimize this upper bound over ϑ: → cross-entropy criterion

(other upper bounds: binary divergence and squared error)

more realistic situation:

– word/symbol errors (edit distance) in lieu of string errors

– no closed-form solution: approximations required
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ASR Modelling: String Posterior Probability

• complete model for [input,output] pair [xT
1 ,W = aS

1 ]

consists of language model (LM) and acoustic (-phonetic) model (AM):

pϑ(W |xT
1 ) :=

qα
ϑ(W ) · qβ

ϑ(W = aS
1 |x

T
1 )

∑

W̃ qα
ϑ(W̃ ) · qβ

ϑ(W̃ = ãS
1 |x

T
1 )

with model parameters ϑ (and exponents α, β)

• motivation: the log-linear combination mimicks the generative approch:

pϑ(W |xT
1 ) :=

pϑ(x
T
1 ,W )

∑

W̃ pϑ(x
T
1 , W̃ )

=
pϑ(W ) · pϑ(x

T
1 |W )

∑

W̃ pϑ(W̃ ) · pϑ(x
T
1 |W̃ )

=
pϑ(W ) · ppϑ(W |xT

1 )
∑

W̃ pϑ(W̃ ) · ppϑ(W̃ |xT
1 )

with a re-normalized pseudo posterior: ppϑ(W |xT
1 ) := 1/Z(xT

1 ) · pϑ(x
T
1 |W )

• language model:

learned from text data only (without annotation) (e. g. 1000 Mio words)

• acoustic model (HMM, finite-state transducer, cross-attention model,...):

learned from (manually) transcribed audio data (e. g. 1000 hours = 10 Mio words)
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Acoustic Model: Training Criterion and Procedure

suitable training criterion for string errors with (audio, text) pairs [Xr,Wr], r = 1, ..., R:

max
ϑ

{

∑

r

log pϑ(Wr|Xr)
}

pϑ(W |X) =
qα(W ) · qβ

ϑ(W |X)
∑

W̃ qα(W̃ ) · qβ
ϑ(W̃ |X)

numerical optimization problem in training:

• string errors: ignore denominator: simplified baseline

– effect: decoupling of AM and LM

advantage: independent training of AM and LM

– variants for AM training: full sum or best path/Viterbi (frame-wise CE)

note: EM framework still works for neural HMM !

• keep denominator: sequence discriminative training

result: LM affects training of AM !

– loss function: string errors (IBM 1986: MMI)

– loss function: symbol errors (e.g. WER) in string context

variants in ASR: Povey’s phoneme/symbol error, sMBR, expected loss, ...

denominator: how to approximate it?

– word hypothesis lattice

– simplifed language model (lattice-free MMI, Povey 2016)

history: Bahl/IBM 1986, Normandin 1991, Valtchev 1996, Povey 2002/16, Heigold 2005/12
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ASR: End-to-End Approaches

reconsider training criterion for (audio,text) pairs [Xr,Wr], r = 1, ..., R :

max
ϑ

{

∑

r

log pϑ(Wr|Xr)
}

pϑ(W |X) :=
qα(W ) · qβ

ϑ(W |X)
∑

W̃ qα(W̃ ) · qβ
ϑ(W̃ |X)

terminology: What does end-to-end mean?

• training criterion: a single global criterion for optimum performance,

independent of model structure

• monolithic structure of a model:

simplicity/elegance of programming? what about adequacy/performance?

remarks:

• ASR: training of acoustic model and language model:

– transcribed audio: 1000 hours = 10 Mio words

– text (from press, books, internet,...): 1000 Mio words and more

• end-to-end concept:

– for training and search/generation: yes

(? and robustness/easiness of training)

– for the structure: can it reflect the training data situation?

– in addition to LM: pronunciation lexicon?
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Effect of AM, Training Criterion and LM

(Tüske et al. RWTH 2017)

QUAERO task, English Eval 2013:

broadcast news/conversations, podcasts, TED lectures

Word error rates [%] on QUAERO English Eval 2013

(PP: perplexity of LM = power of LM ∼= effective vocab.size)

Acoustic Model (AM): hybrid HMM Language Model (LM)

Type Training Criterion
Count Count + ANN

PP=131.1 PP=92.0

Gaussian mixtures
max.lik. 20.7

seq.disc. training 19.2 16.1

Neural Net

FF MLP
frame-wise CE 11.6

seq.disc. training 10.7 09.0

LSTM RNN
frame-wise CE 10.6

seq.disc. training 09.8 08.2

observations:

– improvements by acoustic ANNs: 50% relative

– improvement by language model ANN: 15% relative

– total improvements by deep learning: 60% relative (from 19.2% to 8.2%)
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ASR: Librispeech Task: Hybrid HMM vs. Attention

(RWTH 2019)

speech data: read audiobooks from the LibriVox project

with training data:

– acoustic model: 960 hrs of speech

– language model: 800 million words

word error rates [%]:

WER (dev) WER (test)

team approach 1st 2nd 1st 2nd

half half half half

Irie, Zeyer et al. RWTH attention with BPE units, ’no’ LM 4.3 12.9 4.4 13.5

(Interspeech 2019) + LSTM-RNN LM 3.0 9.1 3.5 10.0

+ transformer LM 2.9 8.8 3.1 9.8

Lüscher, Beck et al. RWTH hybrid HMM, CART, 4g LM 4.3 10.0 4.8 10.7

(Interspeech 2019) + seq. disc. training 3.7 8.7 4.2 9.3

+ LSTM-RNN LM 2.4 5.8 2.8 6.2

+ transformer LM 2.3 5.2 2.7 5.7

Zeghidour et al., FB 2018 gated CNN with letters/words 3.2 10.1 3.4 11.2

Irie et al., Google 2019 attention with WPM units 3.3 10.3 3.6 10.3

Park et al., Google 2019 attention ... data augmentation - - 2.5 5.8
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Acoustic Modelling: Recent Results on Librispeech Task

(RWTH 2022 - 2023)

word error rates [%]: recent results by RWTH team

(W. Zhou, S. Berger, T. Raissi, M. Zeineldeen, ... )

– acoustic encoder: conformer

– language model: transformer

WER [%] (test)

method parameters epochs clean other

hybrid HMM (phonemes, CART) 86M 11 2.2 4.5

transducer with phonemes 75M 36 1.9 4.0

(context 1)

transducer with BPE units 87M 56 1.8 4.1

(context 1)

transformer with BPE units 103M 100 1.9 4.2

(full context)

word error rates [%] of other teams:

WER [%] (test)

authors/method parameters epochs clean other

Park & Zhang+ 2020: transformer 360M 600 2.2 5.2

Zhang & Wang+ 2020: CTC-transformer 124M 200 2.1 4.2

Kim & Wu+ 2023: transformer 149M 80 1.8 3.7
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Statistical Decision Theory for ASR (and NLP):

Where do we stand now ?

• exact loss function:

– not so important in testing

– more important in training

• probabilistic models:

– are most important:

caused progress 1980-2023

– dependencies and synchronization

between input/output strings

– often (e. g. ASR): separate LM

• training criterion:

– is important

– depends on prob. models

• numerical optimization:

– hard math. problem

– all variants of backpropagation

– important in practice (1992 vs. 2022!)

• decision rule: search/generation:

today’s models: more important

for low-accuracy conditions

this lecture:

– statistical decision theory defines a perfect framework

– its principles go beyond NLP and ANN

Training
Data

Test
Data

Probabilistic
Models

Performance Measure
(Loss Function)

 Training Criterion

Combinatorial Optimization
(Search)

Output

Parameter
Estimates

Evaluation

Numerical Optimization

Bayes Decision Rule
(Exact Form)
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3 Language Models (small and large)

H. Ney: HLT - From Small to Large Models 41 RTTH Jaca, keynote 14-Nov-2023



Language Modelling in ASR

Bayes decision rule for generating word sequence wN
1 from speech signal xT

1

(assuming a log-linear model and dropping the denominator):

xT
1 → ŵN̂

1

(

xT
1

)

= argmax
N,wN

1

{

qα
ϑ(w

N
1 ) · qβ(wN

1 |xT
1 )

}

language model: the prior probability qϑ(w
N
1 ) and its parameters ϑ

observations about the language model qϑ(w
N
1 ):

– it can be learned from text only (unlabeled data!), e. g. from 100 Mio to 10 Bio words

– it can improve performance dramatically

question:

How to measure the quality of an LM (without a recognition experiment)?
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Quality of Language Model and Perplexity

considerations:

• use prior qϑ(w
N
1 ) in Bayes decision rule,

but it depends on the single sentence and its length

• define a sufficiently large test corpus

by concatenating all test sentences to a LONG super sentence

(use special symbols for sentence end and unknown word)

• apply the LM probability to this super sentence of N words

and perform normalization:

– geometric average of probability per word by computing N -th root

– invert average probability into perplexity: = average effective vocabulary size

formal definition of perplexity PP:

PP :=
(

qϑ(w
N
1 )

)−1/N

=
(

∏N

n=1
qϑ(wn|w

n−1
0 )

)−1/N

log PP = −
1

N
·
∑N

n=1
log qϑ(wn|w

n−1
0 )

with artificial start symbol w0

interpretation of perplexity: from single sentence to whole database
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Language Modelling and Homophones (IBM 1985)

prior probability qϑ(w
N
1 ) of any sentence wN

1 = w1...wn...wN

based on simplified dependence: word trigram language model:

qϑ(w
N
1 ) =

N
∏

n=1

qϑ(wn|w
n−1
1 ) =

N
∏

n=1

qϑ(wn|wn−2, wn−1)

disambiguation of homophones (Tangora system, IBM 1985):

• homophones: two, too, to

Twenty-two people are too many to be put in this room.

• homophones: write, Wright, right

Please write to Mrs. Wright right away.
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Language Modelling: Approaches

• limited history: Markov chain of order k:

limit the dependence on the full history wn−1
0 to the immediate k predecessor words:

qϑ(wn|w
n−1
0 ) := qϑ(wn|w

n−1
n−k)

modelling concepts:

– discrete: event counts (e. g. word fourgrams, trigrams, bigrams, unigrams)

and smoothing

– continuous-valued: FF-MLP with word embeddings (IMPORTANT!),

i. e. a mapping from word symbols to vectors

• unlimited history (with word embeddings):

continous-valued: RNN and other sequence models (e. g. transformer)

natural training criterion for a corpus wN
1 : minimum perplexity

max
ϑ

{

N
∑

n=1

log qϑ(wn|w
n−1
0 )

}

– equivalent to cross-entropy training (or perplexity, maximum likelihood)

– resulting estimates: relative frequencies based on event counts
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Neural Language Modelling

[Sundermeyer et al.; RWTH 2012, 2015]

• important principle (undervalued!):

– move away from count-based statistics for categorial random variables

– instead: word/symbol embeddings and operations in a high-dim. vector space

• interpolation of TWO models (2015):

count model (3 Bio words) + ANN model (60 Mio words)

• details and refinements:

– use of word classes for softmax in output layer

– unlimited history of RNN: requires re-design of ASR search

• perplexity (PP) and word error (WER) rate on test data (QUAERO)

models PP WER[%]

count model 131.2 12.4

+ 10-gram MLP 112.5 11.5

+ Recurrent NN 108.1 11.1

+ LSTM-RNN 96.7 10.8

+ 10-gram MLP with 2 layers 110.2 11.3

+ LSTM-RNN with 2 layers 92.0 10.4

• improvements achieved:

– perplexity: 30% reduction: from 131 to 92

– WER: 15% reduction: from 12.4% to 10.4%
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Effect of Language Model: Word Error Rate vs. Perplexity

empirical law: WER = α · PP β with β ∈ [0.3, 0.5]

[Makhoul & Schwartz 94, Klakow & Peters 02]
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Effect of Language Model: Word Error Rate vs. Perplexity

empirical law: WER = α · PP β

open question: theoretical justification?
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note: Google paper at ICASSP-23: LLM for ASR
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Language Model: Decipherment

encryption method: homophonic ciphers:

each plaintext letter is mapped to one or several ciphertext symbols.

compare with spoken language:

a homophone (= pronunciation) has several different writings.

encrypted texts: two examples:

Beale ciphers (Virginia/US 1820/85) and Zodiac killer ciphers (Bay Area/US 1968/9)

– Beale cipher 2: sequence of 762 numbers with 182 distinct numbers

– Zodiac killer 408-cipher: sequence of 408 ’artificial’ symbols with distinct 54 symbols

(sort of) perfect decipherment:

• letter-based language model (of general English) is used

to score all possible substitution possibilities

• combinatorial search problem: beam search

• paper at EMNLP 2014: M. Nuhn, J. Schamper, H. Ney:

Improved Decipherment of Homophonic Ciphers.

• article in Mental Floss, 04-Jun-2018:

https://www.mentalfloss.com/article/540277/beale-ciphers-buried-treasure

H. Ney: HLT - From Small to Large Models 49 RTTH Jaca, keynote 14-Nov-2023



Language Modeling and Artificial Neural Networks

History:

• 1989 [Nakamura & Shikano 89]:

English word category prediction based on neural networks.

• 1993 [Castano & Vidal+ 93]:

Inference of stochastic regular languages through simple recurrent networks

• 2000 [Bengio & Ducharme+ 00]:

A neural probabilistic language model

• 2002 [Schwenk & Gauvain 02, Schwenk 07]: Continuous space language models

• 2010 [Mikolov & Karafiat+ 10]:

Recurrent neural network based language model

• 2012 RWTH Aachen [Sundermeyer & Schlüter+ 12]:

LSTM recurrent neural networks for language modeling

• 2017 [Vaswani & Shazeer+ 17]: transformer architecture (originally for MT)

• since 2019 beyond ASR: multi-lingual, multi-task, many parameters (200 billion!)

(GPT, Whisper, LaMDA, OPT, Bloom, ChatGPT, ...):

– GPT: general pretrained transformer

– LLM: large-scale language models
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Word Representations/Embeddings

important component in ANN-based LMs (contrast: count-based LM):

– word/symbol representations/embeddings: vectors in high-dim. space

– in addition to ANN structures (MLP, RNN, LSTM-RNN, transformer, ...)

word representations used without ANN context

(personal communication, Eduardo Lleida, 13-Nov-2023):

• 1971 Salton: information retrieval using term-document matrix

• 1993 Schütze & Peterson: co-occurrence of two words

• 2004 Bellegarda: Latent Semantic Modelling for Speech Recognition

• 2013 Hofmann: Probabilistic Latent Semantic Analysis
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Word Representations: Language Models and General NLP

power of LMs and word representations (spirit of distributional semantics):

1954 Harris: Words are similar if they appear in similar contexts.

1957 Firth: You shall know a word by the company it keeps.

• papers by [Collobert & Weston 08, Collobert & Weston+ 11]:

2008: A Unified Architecture for NLP: Deep Neural Networks with Multitask Learning.

2011: NLP (almost) from Scratch.

use of word vectors for formal NLP tasks:

POS/NER tagging, syntactic analysis, semantic role labeling, text classif., ...

• word vectors: (semantic) interpretations and calculations

examples of relations between word vectors [Mikolov & Corrado+ 13]:

Germany − Berlin ∼= France − Paris

king − queen ∼= man − woman

• 2013/2014: use LM concept for MT [Kaltenbrenner & Blunsom 13, Sutskever & Vinyals+ 14]

• since 2019: LLMs (large-scale LMs) based on GPT architecture:

– G: generative: generate text (as opposed to formal NLP tasks)

– P: pre-trained: based on text without any annotation

– T: transformer: ANN structure for sequence-to-sequence processing

LLM implies: more data, more parameters (200 Bio), multi-lingual, multi-task, ...
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Refining LLMs: InstructGPT

InstructGPT introduced by OpenAI, arxiv, 04-Mar-2022:

Training language models to follow instructions with human feedback.

three levels of training:

• pre-training or unsupervised training (using log perplexity):

– training mode: raw text with no annotation

– operation mode (surprising result !):

type of task (prompt): can be specified in plain language

e. g. Q&A, summarization, story generation, dialog!, ...

e. g. multilingual LLM: translation

full system operation is described by a triplet (in plain language!):

triplet := [prompt, input, output]

(typically used in so-called few-shot learning/conditioning)

• supervised fine-tuning:

– training data: based on (many) triplets of the above type

– training criterion: (log) perplexity

all triplets are interpreted as a single sequence of text

• human feedback and reinforcement learning:

– starting point: system is used to generate the outputs for [prompt, input] pairs

– human evaluation and ranking for LLM-generated outputs

– reinforcement learning based on human scores

H. Ney: HLT - From Small to Large Models 53 RTTH Jaca, keynote 14-Nov-2023



LLM and GPT: Typical Tasks

every-day NLP tasks with plain text for input and output:

• text summarization:

input: full text

output: text summary

• story generation:

input: key words

output: full text

• machine translation (with bilingual training data):

input: sentence in source language

output: sentence in target language

• conversational dialog (with many turns):

input: customer query/command

output: system response

remarkable property (in contrast to formal NLP tasks):

everything is expressed in terms of plain every-day language:

– system input: formulated by the user

– type of task (prompt/instruction): specified by the user

– generated output: smooth fluent language

(primary goal which a language model is designed for)
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ChatGPT and Related Models

• large-scale language model (LLM) called chatGPT:

– API introduced on 30-Nov-2022 by OpenAI

– function: human-like conversational (text) dialog (unlimited domain)

– CEO S. Altman: "costs are eye-watering"

– operational loss in 2022: 540 Mio USD (416 on computing, 89 on staff)

• OpenAI’s technology behind chatGPT:

– baseline architecture GPT: generative pre-trained transformer

– GPT-3: with 1.3 to 175 Bio parameters,

trained on 300 Bio (subword) tokens (cut-off date: June 2020)

– InstructGPT (sibling to ChatGPT): refinement with human feedback

• other types of dialog systems:

– limited-domain, task-oriented dialog

– explicit dialog strategy: manually designed and coded

specific systems: voice command and control

– Amazon’s Alexa (loss in 2022: 10 Bio USD - 12 000 employees)

– Apple’s Siri

– Google’s (Digital) Assistant
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Some LLMs (until 2022)

• OpenAI:

– 2018 GPT-1: 0,12 Bio

– 2019 GPT-2: 1,5 Bio

– 2020 GPT-3: 175 Bio (train: 300 Bio)

– 2022 InstructGPT and ChatGPT

• Google:

– 2018 BERT: 3,3 Bio (train: 300 Bio, 40 epochs)

– 2019 T5: 11 Bio (train: 1000 Bio)

– 2020 Meena (for dialog): 2,6 Bio (train: 61 Bio)

– 2022 LaMDA: 137 Bio (train: 2810 Bio)

– 2022 PaLM: 540 Bio (train: 780 Bio)

• more LLMs:

– 2019 BART / Meta: 0,33 Bio (train: 55 Bio, 40 epochs)

– 2019 Megatron / Nvidia: 3,9 Bio (train: 366 Bio)

– 2020 DialoGPT / Microsoft: 0,76 Bio (train: 10 Bio)

– 2022 OPT / Meta: 175 Bio (train: 180 Bio)

• years 2021-2022: more than 50 LLMs

recent European activities:

– BLOOM / BigScience: 176 Bio (train: 366 Bio)

– Luminous / Aleph Alpha (OpenGPT-X): 70 Bio (train: 588 Bio)

– HPLT (EU project): major EU languages
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4 Conclusions
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HLT in general

40 years of building operational systems for HLT:

• success of data-driven vs. handcrafted rule-based approaches

• misconception: things started 40 years ago, not in 2013!

• persistent evolution of data-driven concepts:

– signal-processing NLP: ASR and HWR

– text-processing NLP:

¤ language models for ASR (+ HWR + MT)

¤ machine translation (MT)

¤ large language models for NLU, e. g. Q&A, dialog management, ...

• statistical decision theory:

unifying framework for data-driven approach and machine learning:

– distinguish ingredients:

loss function, prob.model, training criterion along with numerical optimization

– includes as a special case: ANNs and deep learning

– most useful framework after 40 years of NLP
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LLM

• large-scale language models:

– primary design goal: to generate smooth fluent text

– approach: data, but no manual design or coding

– dialog management: learned by data-driven approach

(unlike manually designed dialog strategies)

– (hopeful) by-product: semantic correctness ?

• LLMs are part of data-driven machine learning:

– more data, more complex models, more computation

– 1989 R. Mercer/IBM: There is no data like more data.

• specific success (’revolution’):

– symbol embeddings/vectors in contrast to symbol count statistics

along with operations in high-dim. vector space:

– useful for areas beyond NLP? general concept for categorical statistics?
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Success of LLMs: Why?

where does the success/hype of LLMs come from?

• power of transformer architecture

(and computer hardware!)

• huge amount of training data:

– no annotation required!

– straightforward training criterion: perplexity

• instruction/prompt along with input and output:

everything in every-day language (unlike a formal NLP task)

• in particular: success for dialog tasks:

no explicit dialog strategy!

• unclear:

relevance of supervised fine-tuning and reinforcement learning
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What about the Future?

future: what time horizon: 3, 5, 10, 20 years?

e. g. difficult prediction: ANN around 1990

short-term horizon: low-hanging fruits

more data, more complex models, more parameters, more computation

long-term horizon: scientific challenges:

beyond more data, we need better mathematical frameworks:

• back-propagation search:

beyond trial and error: better theory of numerical optimization

• present ANN structures

– deep MLP, RNN, LSTM, self-embedding, transducer, transformer,...:

– lack of principal mathematical justification:

why are some structures better for modelling and learning?

• beyond ANN structures:

– what about going beyond the present structures (matrix-vector product + nonlinearity)?

– there is plenty of (data-driven) life outside and beyond deep learning!

(but yes, it will be complex mathematical models)
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What about the Future? (ctd)

• word/symbol embeddings in symbolic processing (NLP):

– most important concept in lieu of count-based statistics

– widely underrated in statistics of categorical data (and general NLP ?)

• open research directions: beyond supervised machine learning:

strictly unsupervised machine learning,

i. e. absolutely no parallel (input,output) pairs
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END

RTTH, Jaca 2023: Data-Driven Speech & Language Technology (HLT):

From Small to Large Models
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Mathematical Formalism (Alternative):

Direct or Posterior HMM for p(aS
1 |x

T
1 ) (view: how to leave [t, s = st] ?)

three sequences over time:

xT
1 = x1, ..., xt, ..., xT

sT1 = s1, ..., st, ..., sT

yT
1 = y1, ..., yt, ..., yT

A

L

E

X

$

$

TIME

A

L

E

X

$

$

TIME

path consists of transitions leaving [t, s = st]:

first label yt and then transition δt:

[t, s = st] → [t+1, st+1 = st+δt] δt ∈ {0, 1}

JOINT event of frame label yt and δt:

[yt, δt] : p
(

[yt, δt]
∣

∣..., xT
1

)

link to state s with label as ∈ aS
1 :

[yt, δt] : p
(

[yt = as, δt]
∣

∣..., xT
1

)

first-order dependence in aS
1 :

[yt, δt] : p
(

[yt = as, δt]
∣

∣as−1, x
T
1

)

remarks:

– for full context, replace as−1 by as−1
0

– alternative notation: how to reach [t, s = st] ?

first transition δt and then label yt:

p
(

[δt, yt = as]
∣

∣as−1, x
T
1

)
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Mathematical Formalism (Alternative):

Direct or Posterior HMM for p(aS
1 |x

T
1 ) (view: how to leave [t, s = st] ?)

formal derivation of full model:

p(aS
1 |x

T
1 ) =

∑

sT
1

p(aS
1 , s

T
1 |x

T
1 )

finite-state model: factorization over t:

first-order model in sT1 and aS
1

=
∑

sT
1

∏

t

p
(

[yt = ast, st+1]
∣

∣st, ast−1, x
T
1

)

difference in state/segment indices: δt := st+1 − st

=
∑

sT
1

∏

t

p
(

[yt = ast, δt]
∣

∣ast−1, x
T
1

)

explicit segmental interpretation:

=
∑

sT
1

∏

s

∏

t: st=s

p
(

[yt = as, δt]
∣

∣as−1, x
T
1

)

acoustic encoder : ht = ht(x
T
1 )

=
∑

sT
1

∏

s

∏

t: st=s

p
(

[yt = as, δt]
∣

∣as−1, ht(x
T
1 )

)

A

L

E

X

$

$

TIME

frames t within segment s:

– last frame: δt = 1

– other frames: δt = 0
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Language Modeling and Artificial Neural Networks

goal of language modelling: compute the prior qϑ(w
N
1 ) of a word sequence wN

1

– how plausible is this word sequence wN
1 (independently of observation xT

1 !) ?

– measure of language model quality: perplexity PP (= geometric average)

interpretation: effective vocabulary size as seen by ASR decoder/search

logPP := log 1
/

N

√

qϑ(w
N
1 ) = −1/N ·

N
∑

n=1

log qϑ(wn|w
n−1
0 )

interpretation: prediction task:

based on history wn−1
0 , predict qϑ(wn|...)

approaches:

– use full history: RNN or LSTM

– truncate history: → k-gram MLP

perplexity PP on test data (QUAERO)

(Sundermeyer et al.; RWTH 2012, 2015):

approach PP

baseline: count model 163.7

10-gram MLP 136.5

RNN 125.2

LSTM-RNN 107.8

10-gram MLP with 2 layers 130.9

LSTM-RNN with 2 layers 100.5

important result: improvement of PP by 40%
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Industry vs. Academia

most important contributions (see page 5):

• academia:

- general HMM framework

- RNN-HMM [Robinson 1994]

- RNN-CTC [Graves 2009]

- deep learning (in the narrow sense!) [Hinton 2011]

- cross-attention [Montreal team 2014]

• industry:

- self-attention and transformer

- conformer
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History: How (Small) Language Models Started (1980-2000)

(small) language models:

• introduced by IBM for ASR around 1980

– key advantage: use of text data without annotation

– statistics: based on counts of word trigrams (and higher order n-grams)

– concept: sucessfully transferred from ASR to HWR and MT

• experimental conditions around 2000:

– training: about 100 Mio running words (tokens)

– model size: same order of magnitude

• training criterion: log perplexity (= cross-entropy), i. e. predict next word

probability of a word sequence wN
1 = w1...wn....wN :

log pϑ(w
N
1 ) =

∑N
n=1 log pϑ(wn|w

n−1
0 )

word sequence ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

left-to-right • • • • • • • • • • • ¤ . . . . . . . . .

bidir. (BERT 2018) • • • • • • • • • • • ¤ • • • • • • • • •
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Speech Translation

TEXT IN

TARGET LANGUAGE

TEXT IN

SOURCE LANGUAGE

SPEECH SIGNAL IN

SOURCE LANGUAGE

source audio X → source text F → target text E

challenge: exploit three types of training data

– text MT: (F,E) sentence pairs (e. g. 100 Mio = 1-2 Bio words)

– ASR: (X,F ) pairs (e. g. 5000 hours = 50 Mio words)

– speech-text MT: (X,E) (e. g. 1000 hours?)
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Tasks in Human Language Technology:

Speech-to-Text (Speech Translation)

TEXT IN

TARGET LANGUAGE

TEXT IN

SOURCE LANGUAGE

SPEECH SIGNAL IN

SOURCE LANGUAGE

TEXT IN

TARGET LANGUAGE

TEXT IN

SOURCE LANGUAGE

SPEECH SIGNAL IN

SOURCE LANGUAGE
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Tasks in Human Language Technology:

Speech-to-Speech Translation

SPEECH SIGNAL IN

TARGET LANGUAGE

TEXT IN

TARGET LANGUAGE

TEXT IN

SOURCE LANGUAGE

SPEECH SIGNAL IN

SOURCE LANGUAGE

SPEECH SIGNAL IN

TARGET LANGUAGE

TEXT IN

TARGET LANGUAGE

TEXT IN

SOURCE LANGUAGE

SPEECH SIGNAL IN

SOURCE LANGUAGE
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ANN with Softmax Output

ANN: probabilistic interpretation:

• ANN outputs [Bourlard & Wellekens 89]: class posteriors

• softmax [Bridle 89]: softmax = posterior of (class prior + Gaussian)

(assuming class-independent covariance matrix)

interpretation:

ANN with softmax = posterior of (class prior + Gaussian) + feature extraction

• hidden layers perform feature extraction:

z → x = f(z)

with feature vector x ∈ IRD before output layer

note: no dependence on class labels c = 1, ..., C

• output layer: probability distribution over classes c

p(c|x) =
exp(αc + λt

c · x)
∑

c′ exp(αc′ + λt
c′ · x)

with output layer weights λc ∈ IRD

and offsets (biases) αc ∈ IR
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Tandem Approach: Explicit Feature Extraction

• tandem approach: two parts:

MLP for feature extraction + generative HMM

[Fontaine & Ris+ 97, Hermansky & Ellis+ 00]

• extensions, e. g. bottleneck concept

[Stolcke & Grezl+ 06, Grezl & Fousek 08],

[Valente & Vepa+ 07, Tüske & Plahl+ 11]

Gaussian Mixture

PCA/LDA

RWTH’s Tandem Structure

[Tüske & Plahl+ 11]

Gaussian Mixture
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Frame Label Posterior Probability

time

A

L

E

X

· · · · · ·

·
·
·

·
·
·

·
·
·

·
·
·

key quantity:

frame label posterior at time t

over labels a = as for state/segment s:

qt(as|x
T
1 ) ≡ q(yt = as|ht(x

T
1 ))

with frame labels yt, t = 1, ..., T

acoustic encoder / feature extraction:

– deep MLP with window around t: xt+δ
t−δ

– bi-direct. (LSTM) RNN: full context xT
1

– transformer and conformer

note: huge progress 1990-2020

label posteriors ◦ ◦ ... ◦ q(a|ht) ◦ ... ◦ ◦

| | | | | | | | |

features h1 h2 ... ht−1 ht ht+1 ... hT−1 hT

| | | | | | | | |

acoustic vectors x1 x2 ... xt−1 xt xt+1 ... xT−1 xT
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Posterior HMM: From Hybrid HMM to CTC to RNN-T

direct re-writing of posterior HMM probability:

qϑ(W = aS
1
|xT

1
) =

∑

sT
1

∏

t
qϑ(s

T
1
, aS

1
|xT

1
)

=
∑

sT
1

∏

t
qϑ(st+1, yt = ast|st, ast−1, x

T
1
)

=
∑

sT
1

∏

t
qϑ(st+1|st, ast) · qϑ(yt = ast|ast−1, x

T
1
)

papers by RWTH: [Raissi & Beck+ 20/21/22 arxiv]

[Zhou & Berger+ 2021], [Zhou & Zeyer+ 2021]

posterior HMM with ǫ symbol: CTC and transducer (RNN-T/RNN-A)

[Graves & Fernandez+ 06, Graves 12, Sak & Shannon+ 17]:

– remove transition probabilities

and add special symbol: blank or ǫ:

∑

yt∈{as}∪ ǫ
qϑ(yt|as′, x

T
1
) = 1

– interpretation as probability of symbol repetition

and segmental model [Zhou & Zeyer+ 2021]

– transducer variant: no internal LM [Zhou & Berger+ 2021]

unifying principles

for posterior HMM, CTC and transducer with no internal LM:

– hidden variable: alignment path

– sum criterion (or best path) along with EM-style training

– acoustic encoder to be included

time

A
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E

X
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X

Time
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E

E

L
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ε

ε

ε

ε
ε

ε
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From Hybrid HMM to CTC to RNN-T

principal considerations:

– with ǫ/blank or transition prob.

– use of frame label priors

– duration constraints

– acoustic context dependence of labels:

monophone, triphone, CART labels

– LM context in output generation:

recursive, limited, none

practical tricks (maybe important):

– chunking

– spec-augment

– label smoothing

– extended training criteria:

encoder loss, focal loss

– sub-sampling (e.g. 10→30→60 msec)

– ...

time t

s
t
a
t
e

s
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Time
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X
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E
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L
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Public Databases/Tasks: Switchboard and Call Home

Tasks: Switchboard and Call Home

• conversational speech: telephone speech, narrow band;

challenging task: initial WER: 60% (and higher) on Switchboard

• training data for acoustic model: Switchboard corpus

– about 300 hours of speech

– about 2400 two-sided recordings with an average of 200 seconds

– 543 speakers

• test set Hub5’00

– SWB: 20 telephone recordings form Switchboard studies

– CHM: 20 telephone conversations from Call-Home US English Speech

– total: 3.5 hours of speech

• training data for language model

– vocabulary size fixed to 30k

– Switchboard corpus: 2.9M running words

– Fisher corpus: 21M running words
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ASR: Results (April 2019) on Switchboard & Call Home

baseline models:

– language model: 4-gram count model

– acoustic model: hybrid HMM with CART (allophonic) labels:

LSTM bi-RNN with frame-wise cross-entropy training

– speaker/channel adaptation: i-vector [Dehak & Kenny+ 11]

– affine transformation [Gemello & Manai+ 06, Miao & Metze 15]

word error rates [%]:

adaptation methods SWB CHM average

no baseline approach 9.7 19.1 14.4

+ seq. discr. training (sMBR) 9.6 18.3 13.9

+ LSTM-RNN language model 7.7 15.8 11.7

yes (i-vector) baseline approach 9.0 18.0 13.5

+ seq. discr. training (sMBR) 8.4 17.2 12.8

+ LSTM-RNN language model 6.8 15.1 10.9

+ adaptation by affine transformation 6.7 13.5 10.2

overall improvements over baseline:

– 33% relative reduction in WER

– by seq. discr. training, LSTM-RNN language model and adaptation
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Best Results on Call Home (CHM) and Switchboard (SWB)

(best word error rates [%] reported)

team CHM SWB training data, remarks

Johns Hopkins U 2017 18.1 9.0 300h, no ANN-LM, single model, data perturbation

Microsoft 2017 17.7 8.2 300h, ResNet, with ANN-LM

ITMO U 2016 16.0 7.8 300h, with ANN-LM, model comb., data perturbation

Google 2019/arXiv 14.1 6.8 300h, attention models

RWTH U 2017 15.7 8.2 300h, with ANN-LM, model comb.

RWTH U 2019/arXiv 13.5 6.7 300h, single models, adaptation

Microsoft 2017 12.0 6.2 2000h, model comb.

IBM 2017 10.0 5.5 2000h, model comb.

Capio 2017 9.1 5.0 2000h, model comb.
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ASR: Librispeech Task: Hybrid HMM vs. Attention

(Vassil Panayotov & Daniel Povey)

speech data: read audiobooks from the LibriVox project

with training data:

– acoustic model: 960 hrs of speech

– language model: 800 Mio words

word error rates[%]:

dev test

team approach 1st 2nd 1st 2nd

half half half half

Irie, Zeyer et al. RWTH attention with BPE units, ’no’ LM 4.3 12.9 4.4 13.5

(Interspeech 2019) + LSTM-RNN LM 3.0 9.1 3.5 10.0

+ transformer LM 2.9 8.8 3.1 9.8

Lüscher, Beck et al. RWTH hybrid HMM, CART, 4g LM 4.3 10.0 4.8 10.7

(Interspeech 2019) + seq. disc. training 3.7 8.7 4.2 9.3

+ LSTM-RNN LM 2.4 5.8 2.8 6.2

+ transformer LM 2.3 5.2 2.7 5.7

Zeghidour et al., FB 2018 gated CNN with letters/words 3.2 10.1 3.4 11.2

Irie et al., Google 2019 attention with WPM units 3.3 10.3 3.6 10.3

Park et al., Google 2019 attention ... data augmentation - - 2.5 5.8
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Synchronization: Attention vs. HMM

common properties:

– input: acoustic encoder: representation/state vectors ht = ht(x
T
1 ), t = 1, ..., T

– output: (phoneme) labels as, s = 1, ..., S with/without integrated language model

· · · · · ·

·
·
·

·
·
·

·
·
·

·
·
·

• attention: averaging over internal representations ht:

p(aS
1 |x

T
1 ) =

∏

s

p(as|a
s−1
0 , xT

1 ) =
∏

s

p(as|as−1, rs−1, cs)

cs :=
∑

t

p(t|as−1
0 , xT

1 ) · ht

with context vector cs and output state vector rs

criticism for ASR: lack of strict monotonicity

and localization

• posterior HMM: summing over

the products along the paths, i.e. models:

p(aS
1 |x

T
1 ) =

∑

sT
1

∏

t

p
(

st+1, yt = ast

∣

∣

∣
st, ast−1, ht

)

=
∑

sT
1

exp
[

∑

t

log p
(

st+1, yt = ast

∣

∣

∣
st, ast−1, ht

)]
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Phoneme RNN-T: Results

results on phoneme/grapheme RNN-Transducer (RNN-T):

IBM research [Saon & Tüske+ 2021] and RWTH [Zhou & Berger+ 2021]

table and results from [Saon & Tüske+ 2021]

on Switchboard (SWB) and Call-Home (CHM):

authors team approach WER[%]

acoust.model lang.model SWB CHM

Saon & Tüske+ 2021 IBM RNN-T LSTM-RNN 6.3 13.1

Tüske & Saon+ 2020 IBM attention LSTM-RNN 6.4 12.5

Park & Chan+ 2019 Google attention LSTM-RNN 6.8 14.1

Hadiani & Sameti+ 2018 JHU latt.free MMI RNN 7.5 14.6

Irie & Zeyer+ 2019 RWTH hybrid HMM transformer 6.7 12.9

more results on Italian and Spanish (conversational telephone speech)

conclusions based on [Saon & Tüske+ 2021, Zhou & Berger+ 2021]:

similar performance like hybrid HMM
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Hybrid HMM: Recurrent Neural Network (RNN)

ASR: sequence-to-sequence processing

ht

xt

yt

ht−1 h1 h2
... ht−1 ht

...

... ...

... ...

x1 x2 xt−1 xt

y1 y2 yt−1 yt

from simple ANN to RNN:

– introduce a memory (or context) component to keep track of history

– result: two types of input at time t: memory ht−1 and observation xt

extensions:

• (succesful!) application to ASR:

[Robinson 94]

• bidirectional structure [Schuster & Paliwal 97]

• LSTM: long short-term memory

[Hochreiter & Schmidhuber 97, Gers & Schraudolph+ 02]
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Machine Translation: Neural HMM

• translation: from source sentence fJ
1 = f1...fj...fJ to target sentence eI1 = e1...ei...eI

• alignment direction: from target to source: i → j = bi

• first-order hidden alignments and factorization:

p(eI1|f
J
1 ) =

∑

bI
1

p(bI1, e
I
1|f

J
1 ) =

∑

bI
1

∏

i
p(bi, ei|bi−1, e

i−1
0 , fJ

1 )

• resulting model: exploit first-order structure (or zero-order)

training: backpropagation within EM algorithm

source position j

ta
r
g
e
t
p
o
s
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n
i

source position j

ta
r
g
e
t
p
o
s
it
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n
i
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Experimental Results

• WMT task: German → English:

– training data: 6M sentence pairs = (137M, 144M) words

– test data: (about) 3k sentence pairs = (64k, 67k) words

• WMT task: Chinese → English:

– training data: 14M sentence pairs = (920M Chinese letters, 364M English words)

– test data: (about) 2k sentence pairs = (153k Chinese letters, 71k English words)

• performance measures:

– BLEU [%]: accuracy measure: "the higher, the better"

– TER [%]: error measure: "the lower, the better"

• basic units for implementation:

– BPE (byte pair encoding) units rather than full-form words

– alphabet size: about 40k

• RWTH papers (with preliminary results):

[Wang & Alkhouli+ 17, Wang & Zhu+ 18]
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Comparison: Best Results

German→English Chinese→English

test2017 test2018 dev2017 test2017

BLEU TER BLEU TER BLEU TER BLEU TER

LSTM-RNN attention 32.1 56.3 38.8 48.1 21.4 63.6 22.9 62.0

self-attention transformer 33.4 55.3 40.4 46.8 21.8 62.9 23.5 60.1

neural HMM 31.9 56.6 38.3 48.3 20.8 63.2 22.4 61.4

conclusions about neural HMM:

– (nearly) competitive with LSTM-RNN attention approach

– some performance gap to self-attention approach

– room for improvement of neural HMM
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Neural Hidden Markov Model

• LSTM-RNN based representations for input and output:

4 layers of encoder and 1 layer of decoder

• independent models of alignment and lexicon

(no parameter sharing as in attention approach)

HMM German→English Chinese→English

#Par PPL test2017 test2018 #Par PPL dev2017 test2017

BLEU TER BLEU TER BLEU TER BLEU TER

zero-order 129M 5.29 30.9 57.4 37.4 48.9 125M 8.12 20.1 65.1 20.7 64.2

first-order 136M 4.64 31.6 56.5 38.7 48.4 138M 7.63 20.1 64.0 22.0 63.2
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Synchronization using Attention Mechanism

machine translation from source source to target language:

(source: foreign) fJ
1 → eI1 (target: English)

key concepts for modelling posterior probability p(eI1|f
J
1 )

• direct approach: use unidirectional RNN over target positions i = 1, ..., I

with internal state vector si:

p(eI1|f
J
1 ) =

∏

i

p(ei|e
i−1
0 , fJ

1 ) =
∏

i

p(ei|ei−1, si−1, f
J
1 )

interpretation: extended language model for target word sequence

• additional component: attention mechanism for localization

p(ei|ei−1, si−1, f
J
1 ) = p(ei|ei−1, si−1, ci)

with a context vector: ci := C(si−1, f
J
1 )
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Attention-based Neural MT

word embeddings and representations:

• word embedding for target sequence:

– word symbol: ei
– word vector: ẽi = Re(ei) with the embedding (matrix) Re

• word embedding for source sequence:

– word symbol: fj

– word vector: f̃j = Rf(fj) with the embedding (matrix) Rf

• word representation hj for source sequence

using a bidirectional RNN: hj = Hj(f
J
1 )

warning:

– concept: clear distinction between fj, f̃j, hj

– notation and terminology: not necessarily consistent

H. Ney: HLT - From Small to Large Models 90 RTTH Jaca, keynote 14-Nov-2023



Attention-based Neural MT

approach:

• input: bidirectional RNN over source positions j: fJ
1 → hj = Hj(f

J
1 )

• output: unidirectional RNN over target positions i:

yi = Y (yi−1, si−1, ci)

conventional notation:

p(ei|ẽi−1, si−1, ci)

with RNN state vector si = S(si−1, ẽi, ci) and context vector ci = C(si−1, h
J
1 )

• context vector ci: weighted average of source word representations:

ci =
∑

j

α(j|i, si−1, h
J
1 ) · hj α(j|i, si−1, h

J
1 ) =

exp(A[si−1, hj])
∑

j′ exp(A[si−1, hj′])

with the normalized attention weights α(j|i, si−1, h
J
1 )

and real-valued attention scores A[si−1, hj]
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State of the Art: Attention-based Neural MT

[Bahdanau & Cho+ 15]

principle:

• input: source sequence:

fJ
1 → hj = Hj(f

J
1 )

• output distribution:

yi ≡ pi(e|ẽi−1, si−1, ci)

notation in ANN style:

yi = Y (yi−1, si−1, ci)

• state vector of target RNN:

si = S(si−1, yi, ci)

• weighted context vector:

ci =
∑

j α(j|i, si−1, h
J
1 ) · hj

• attention weights:

α(j|i, si−1, h
J
1 ) =

exp(A[si−1, hj)]
∑

j′ exp(A[si−1, hj′])

. . . . . . . . . . . .

yi+1 si+1 ci+1 α(j|i + 1), j = 1, . . . , J

yi si ci α(j|i), j = 1, . . . , J

yi−1 si−1 ci−1 α(j|i − 1), j = 1, . . . , J

. . . . . . . . . . . .

h... hj−1 hj hj+1 h...

f... fj−1 fj fj+1 f...
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Attention-based ASR: xT
1 → aI

1

([Bahdanau & Cho+ 15] for MT)

principle:

• input: source sequence:

(xT
1 , t) → ht = Ht(x

T
1 )

• output distribution:

yi ≡ pi(a|ãi−1, si−1, ci)

notation in ANN style:

yi = Y (yi−1, si−1, ci)

• state vector of target RNN:

si = S(si−1, yi, ci)

• weighted context vector:

ci =
∑

t α(t|i, si−1, h
T
1 ) · ht

• attention weights:

α(t|i, si−1, h
T
1 ) =

exp(A[si−1, ht)]
∑

t′ exp(A[si−1, ht′])

. . . . . . . . . . . .

yi+1 si+1 ci+1 α(t|i + 1), t = 1, . . . , T

yi si ci α(t|i), t = 1, . . . , T

yi−1 si−1 ci−1 α(t|i − 1), t = 1, . . . , T

. . . . . . . . . . . .

h... ht−1 ht ht+1 h...

x... xt−1 xt xt+1 x...
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Attention-based Neural MT:

Sequential Order of Operations

preparations:

• input preprocessing:

fJ
1 → hj = Hj(f

J
1 )

• available at position i − 1:

ẽi−1 ≡ yi−1, si−1, ci−1

sequence of operations

for position i:

1. attention weights:

α(j|i, si−1, h
J
1 ) = ...

2. context vector:

ci =
∑

j α(j|i, si−1, h
J
1 ) · hj

3. output distribution:

yi = Y (yi−1, si−1, ci)

4. state vector:

si = S(si−1, yi, ci)

. . . . . . . . . . . .

yi+1 si+1 ci+1 α(j|i + 1), j = 1, . . . , J

yi si ci α(j|i), j = 1, . . . , J

yi−1 si−1 ci−1 α(j|i − 1), j = 1, . . . , J

. . . . . . . . . . . .

h... hj−1 hj hj+1 h...

f... fj−1 fj fj+1 f...
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Attention Weights

Feedforward ANN vs. Dot Product

re-consider attention weights:

α(j|i, si−1, h
J
1 ) =

exp(A[si−1, hj])
∑

j′ exp(A[si−1, hj′])

two approaches to modelling attention scores A[si−1, hj]:

• additive variant: feedforward (FF) ANN:

A[si−1, hj] := vT · tanh(Ssi−1 + Hhj)

with matrices S and H and vector v

basic implementation: one FF layer + softmax

• multiplicative variant: (generalized) dot product between vectors:

A[si−1, hj] := sTi−1 · W · hj

with a attention matrix W

experimental result: not much difference
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Direct HMM vs. Attention Mechanism

common properties in both approaches:

– bi-directional LSTM RNN over input words fj, j = 1, ..., J

– uni-directional LSTM RNN over output words ei, i = 1, ..., I

· · · · · ·

·
·
·

·
·
·

·
·
·

·
·
·

• direct HMM (finite-state model):

summing over probability models

p(eI1|f
J
1 ) =

∑

bI
1

∏

i
p(bi, ei|bi−1, e

i−1
0 , fJ

1 )

• attention mechanism: averaging

over internal RNN representations hj:

p(ei|e
i−1
0 , fJ

1 ) = p(ei|ei−1, si−1, ci)

with ci =
∑

j

p(j|ei−1
0 , fJ

1 ) · hj(f
J
1 )
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Word Alignments (based on HMM)

(learned automatically; Canadian Parliament)

E
n
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u d
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administering
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collecting
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Tasks in Human Language Technology:

Speech-to-Speech Translation

SPEECH SIGNAL IN

TARGET LANGUAGE

TEXT IN

TARGET LANGUAGE

TEXT IN

SOURCE LANGUAGE

SPEECH SIGNAL IN

SOURCE LANGUAGE
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Tasks in Human Language Technology:

Speech-to-Speech Translation

SPEECH SIGNAL IN

TARGET LANGUAGE

TEXT IN

TARGET LANGUAGE

TEXT IN

SOURCE LANGUAGE

SPEECH SIGNAL IN

SOURCE LANGUAGE
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Language Modeling and Artificial Neural Networks

History:

• 1989 [Nakamura & Shikano 89]:

English word category prediction based on neural networks.

• 1993 [Castano & Vidal+ 93]:

Inference of stochastic regular languages through simple recurrent networks

• 2000 [Bengio & Ducharme+ 00]:

A neural probabilistic language model

• 2007 [Schwenk 07]: Continuous space language models

2007 [Schwenk & Costa-jussa+ 07]: Smooth bilingual n-gram translation (!)

• 2010 [Mikolov & Karafiat+ 10]:

Recurrent neural network based language model

• 2012 RWTH Aachen [Sundermeyer & Schlüter+ 12]:

LSTM recurrent neural networks for language modeling

today: ANNs in language show competitive results.
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Machine Translation

History of ANN based approaches to MT:

• 1997 [Neco & Forcada 97]:

asynchronous translations with recurrent neural nets

• 1997 [Castano & Casacuberta 97, Castano & Casacuberta+ 97]:

machine translation using neural networks and finite-state models

• 2007 [Schwenk & Costa-jussa+ 07]:

smooth bilingual n-gram translation

• 2012 [Le & Allauzen+ 12, Schwenk 12]:

continuous space translation models with neural networks

• 2014 [Devlin & Zbib+ 14]:

fast and robust neural networks for SMT

• 2014 [Sundermeyer & Alkhouli+ 14]:

recurrent bi-directional LSTM RNN for SMT

• 2015 [Bahdanau & Cho+ 15]:

joint learning to align and translate
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